NÁHRADNÍ TUHOST PODLOŽÍ

EFFECTIVE SUBSOIL STIFFNESS

Petr Frantík¹, Pavel Bušina²

Abstrakt

V článku je shrnuto stanovení a ověření náhradní tuhosti podloží pro praktické účely. Stanovení je založeno na výpočtu deformace pružného vrstevnatého poloprostoru. Ověření je provedeno pomocí dvou analytických řešení.

Klíčová slova

Náhradní tuhost, Podloží, Poloprostor.

Abstract

The paper deals with determination and verification of effective stiffness of a subsoil for practical application. The determination is based on solving of displacement of elastic layer half space. Verification is made by two analytical solutions.

Keywords

Effective stiffness, Subsoil, Half space.

1 Úvod

Pro technické účely vyvstává potřeba přiměřeně odhadnout reálnou tuhost základové půdy. Jelikož je základová půda ve směru pod úrovní základové spáry prakticky neomezená, není výpočet náhradní tuhosti snadný a v inženýrské praxi se často různým způsobem zjednodušuje. Při uvažování lineárního působení materiálu podloží je jeho nejvýstižnějším modelem zřejmě tzv. pružný poloprostor, respektive v případě nehomogenního podloží tzv. vrstevnatý poloprostor, viz [1,2].

2 Úloha

Mějme tuhý čtvercový základ o šířce b = 2 m, pro který potřebujeme určit tuhost základové půdy tvořené vrstvami dle tabulky 1 s koeficientem příčné kontrakce v = 0.3.

vrstva	hloubka <i>h</i> [m]	tloušťka <i>t</i> [m]	E [MPa]
0	1.5	1.5	15
1	5	3.5	5
2	8	3	30

Tab.	1:	Vrstvy	podloží	
------	----	--------	---------	--

¹ doc. Ing. Petr Frantík, Ph.D., Vysoké učení technické v Brně, Fakulta stavební, Ústav stavební mechaniky, Veveří 331/95, 602 00 Brno, e-mail: kitnarf@centrum.cz

² Ing. Pavel Bušina, Bochořákova 3076/11a, 61600 Brno, e-mail: info@busina.cz

Dle parametrů uvedených v tabulce 1 známe podloží jen do hloubky 8 metrů. Uvažujme, že nejhlubší naměřená vrstva má teoreticky neomezenou mocnost.

3 Modely

3.1 Vrstevnatý poloprostor

Pro výpočet deformace pružného vrstevnatého poloprostoru byla vytvořena počítačová aplikace ELaS [3] dle postupu podrobně popsaného v příloze publikace [2]. Čtvercový základ je zde nahrazen konstantním tlakem na kruhu s poloměrem R takovým, aby byla dosedací plocha základu stejná:

$$R = \sqrt{\frac{b^2}{\pi}}.$$

Průhyb poloprostoru na jeho povrchu ve středu kruhu vyšel w = 2.21 mm při tlaku p = 10 kPa, viz obr. 1, což odpovídá náhradní tuhosti k = p / w = 4.53 MN/m³. Z průběhu deformace povrchu poloprostoru na obr. 1 je patrné, že řešení neodpovídá deformaci od tuhého základu z důvodu zatěžování konstantním tlakem. Tedy lze očekávat mírně nižší průhyb o velikosti zhruba 2 mm, což dává tuhost $k_{\text{ELaS}} = 5$ MN/m³.

Obr. 1: Průhyb vrstevnatého poloprostoru na jeho povrchu od tlaku p = 10 kPa

Na obr. 2 je zobrazen průběh normálového napětí na povrchu poloprostoru. Z obrázku je patrná numerická nepřesnost vzniklá v důsledku numerické integrace. Tuto nepřesnost můžeme vzhledem k dalším přiblížením tolerovat.

Obr. 2: Napětí na povrchu vrstevnatého poloprostoru od tlaku p = 10 kPa

3.2 Homogenní poloprostor

Výše uvedené výsledky můžeme snadno řádově ověřit pomocí analytického řešení homogenního poloprostoru užitím nejnižší a nejvyšší hodnoty modulu pružnosti *E*. Pro tuhost homogenního poloprostoru k_{hp} do něhož je zatlačován kruhový válec o poloměru *R* platí [4,5]:

$$k_{\rm hp} = \frac{2E}{\pi R (1 - \nu^2)}.$$
 (2)

Dosadíme-li do výrazu maximální a minimální hodnotu modulu pružnosti vyjde nám teoretický rozsah tuhosti $k_{\rm hp} = 3.1$ až 18.6 MN/m³.

3.3 Náhradní jehlan

Užitím silové metody snadno odvodíme deformaci *w_i* náhradního homogenního komolého jehlanu se čtvercovými podstavami o výšce *t_i*:

$$w_{i} = \int_{0}^{t_{i}} \frac{N\overline{N}}{E_{i}A(x)} dx = \frac{F}{E_{i}} \int_{0}^{t_{i}} \frac{1}{(b_{i} + c_{i}x)^{2}} dx = \frac{Ft_{i}}{E_{i}b_{i}(b_{i} + c_{i}t_{i})} = \frac{Ft_{i}}{E_{i}b_{i}b_{i+1}} = \frac{pb^{2}t_{i}}{E_{i}b_{i}b_{i+1}},$$
(3)

kde $F = pb^2$ je náhradní zatěžovací síla, t_i je výška jehlanu, b_i je šířka jehlanu na menší podstavě a c_i je tangenta úhlu jehlanu. Pro celkovou deformaci nehomogenního jehlanu, složeného z několika homogenních jehlanů, pak platí:

$$w = \sum_{i=1}^{n} w_i = pb^2 \sum_{i=1}^{n} \frac{t_i}{E_i b_i b_{i+1}}, \quad b_{i+1} = b_i + c_i t_i, \quad b_1 = b,$$
(4)

kde *n* je počet vrstev a *i* je index vrstvy. Uvážíme-li, že poslední vrstva má v našem případě nekonečnou tloušťku, odvodíme:

$$w_{n} = \lim_{t_{n} \to \infty} \frac{pb^{2}t_{n}}{E_{n}b_{n}b_{n+1}} = \frac{pb^{2}}{E_{n}b_{n}c_{n}},$$
(5)

díky čemuž lze výraz (4) přepsat do tvaru:

$$w = \sum_{i=1}^{n} w_i = pb^2 \left(\sum_{i=1}^{n-1} \frac{t_i}{E_i b_i b_{i+1}} + \frac{1}{E_n b_n c_n} \right).$$
(6)

Odvozený výraz dává pro tangentu $c_i = c = 1$, tj. pro úhel jehlanu 45°, deformaci w = 1.905 mm, což odpovídá tuhosti $k_{jehlan} = 5.25$ MN/m³.

4 Závěr

Článek se věnoval stanovení náhradní tuhosti podloží zatíženého tuhým základem čtvercového tvaru. Výpočtem pomocí tří různých modelů se zcela odlišnou náročností bylo dosaženo konzistentních výsledků. Ukázalo se, že i velmi jednoduchý náhradní jehlan může dát dobrý odhad výsledné tuhosti pro danou konfiguraci podloží při úhlu jehlanu 45°.

Poděkování

Děkuji váženému kolegovi doc. Ing. Petru Holcnerovi, Ph.D za podnět k vytvoření aplikace ELaS. Tento příspěvek vznikl za finanční podpory projektu LO1408 AdMaS UP – Pokročilé materiály, konstrukce a technologie, podporovaného Ministerstvem školství, mládeže a tělovýchovy České republiky v rámci Národního programu udržitelnosti I.

Literatura

- [1] MAINA, J., MATSUI, K. Elastic Multi-layered Analysis Using DE-Integration *Publ. RIMS*, Kyoto University, 41 (2005), 853–867, 2005.
- [2] HUANG, Y. H., *Pavement analysis and design*, Pearson Prentice Hall, second edition, 2004.
- [3] FRANTÍK, P., Java aplikace *ELaS*, FAST VUT v Brně, 2016.
- [4] SNEDDON, I. N., *The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile.* Int. J. Eng. Sci. v. 3, pp. 47–57, 1965.
- [5] WIKIPEDIA, *Contact mechanics*. https://en.wikipedia.org/wiki/Contact_mechanics.